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Many applications in the Internet of Things (IoT) depend on the occurrences of events with temporal and
spatial constraints to determine the further actions. A major challenge encountered is how to specify and de-
tect the spatio-temporal events. The paper adopts Pub/Sub middleware to help IoT applications to capture
spatio-temporal events. Specifically, the paper presents a composite subscription language CPSL and builds
the corresponding Pub/Sub middleware Grus. The subscriptions in CPSL can specify diverse temporal, spatial
and logical relationships of events, in particular, can describe the moving events related to mobile objects,
and Grus is responsible for detecting whether events are matched with subscriptions in a distributed way.
In addition, Grus provides the optimization strategies for subscriptions involving unary spatial operators.
The paper also evaluates Grus's matching performance and costs through simulation experiments. The exper-
imental results show that Grus can achieve satisfying performance and acceptable overheads, and the optimi-
zation strategies can efficiently speed up the detection of spatial events.
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1. Introduction

With thematurity of locating technologies and the popularization of
positioning equipment (e.g. GPS receivers, RFID devices), users can con-
veniently observe the eventswith themarks of time and locationswhich
occur in surrounding environments, but only obtaining these events
(called primitive events) is not enough to satisfy the requirements of
applications in the Internet of Things (IoT). In many application scenar-
ios, the spatio-temporal events need to be detected and used as decision
information for behaviors in the next step,where spatio-temporal events
refer to the complex events which consist of several events (such as
primitive events) and satisfy the spatio-temporal constraints specified
byusers in advance.Moreover, observers of these spatio-temporal events
are permitted to be uncoupled in space and time fromobjects experienc-
ing events. Taking logistical applications as an example, logistics man-
agers often need to observe the occurrences of the following events:
whether a specific vehicle leaves a specificwarehouse,whether a specific
vehicle arrives in a specific area during a specific period, whether a fleet
arrives at multiple unloading places in a specified order, which products
need to be replenished from a store's backroom to the sales floor or from
a warehouse to the specified retail store, etc. Besides, these managers
who may be offline at the time of event occurrence hope to be notified
once they are online. Another example comes from the location-based
rights reserved.
shopping promotion. The storekeepers in a shopping mall need to ob-
serve the events such as the occurrences of pedestrians nearby their
stores. Obviously, storekeepers do not knowwhowill occur nearby in ad-
vance, and pedestrians also do not know who will be interested in their
occurrences. Here, storekeepers and pedestrians are space-uncoupled.
Undoubtedly, capturing these spatio-temporal events is vital to success-
fully deploying such applications. Although the above applications can
be designed and implemented separately, just as [14,7] have done,
whatwe concern is how to satisfy the common requirements in those ap-
plications, i.e., effectively specifying and efficiently detecting the spatio-
temporal events. Although active database systems and data stream
systems can detect events, they cannot fully support the asynchronicity
between event senders and receivers. However, Pub/Submiddleware [10]
is appropriate to providing such services due to its inherent functionality
of event detection and notification in a time- and space-uncoupled way.
Therefore it can play an important role in constructing IoT applications.

In Pub/Sub middleware, events reflect the states of objects and sub-
scriptions describe the events interested by subscribers. Further, in the
Pub/Sub middleware which adopts the content-based subscription
scheme, an event is depicted by multiple attribute-value pairs, and a
primitive subscription is defined as a conjunction of predicates which
are in the form of “name operator value” and designates the constraints
on event attributes. However, a composite subscription is specified by
introducing a set of operators applicable to (primitive/composite) sub-
scriptions (also known as constitutive subscriptions), showing the con-
straints among events.

From thepoint of viewof applications, users, as subscribers, connect to
clients in Pub/Submiddleware and can submit subscriptions to the clients
at any time, on the other hand, the primitive events are also published to
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the clients. After the clients receive the subscriptions or events, they
forward them to servers (also called brokers). The brokers are re-
sponsible for detecting whether incoming events are matched with
existing subscriptions, and sending event notifications to subscribers
if matched.

Since the existing Pub/Sub middleware has limited capabilities to
support the spatio-temporal constraints among events, many event
detection requirements in IoT cannot be met in a convenient way.
To change this situation, we present a composite subscription language
CPSL, and implement the corresponding middleware Grus (standard
version and optimized version), where CPSL aims at expressing various
event patterns involved in temporal, spatial and logical relationships
among events.

The rest of this paper is organized as follows. Section 2 introduces
the related work. Section 3 describes a new composite subscription
language. Section 4 presents a set of approaches to detecting spatio-
temporal events, including the temporal relation identification, the spa-
tial relation identification, a subscription variable mechanism, a spatio-
temporal event matching algorithm, and optimization strategies for
unary location subscriptions. Section 5 evaluates the performance and
costs of Grus. The last section concludes this paper.

2. Related work

Usually, event patterns which users want to observe are described
by composite subscription languages in Pub/Sub middleware, whose
expressiveness delimits the scopes of events which can be identified
by the middleware. The earlier Pub/Sub middleware only provides
limited kinds of composite subscriptions. For example, SIENA [4]
only allows subscribing sequential events. However, Ref. [19] begins
to change, and the CE language in Ref. [19] can support alternation
(i.e. logical OR), weak sequence (i.e. concatenation), strong sequence,
parallelization, iteration of the same kind of events, etc. It permits
users to subscribe event combinations with a given interval. Unfortu-
nately, it does not support non-spontaneous events which cannot no-
tify their occurrences by themselves. Later, the requirements from
workflow management and RFID applications drive researchers to
offer more means to depict complex events [13,15,25]. For example,
by applying newly-proposed temporal operators, RCEDA [25] can
specify the sequences of event occurrences and the constraints on in-
tervals of event occurrences. Our previous work [13] focuses on the
temporal relationships of events, especially those with strict partial
orders. The languages presented in Refs. [25,13] both can support
non-spontaneous events, but totally ignore spatial relationships of
events.

Some work pays attention to spatial events. Ref. [6] designs and
implements two subscription predicates Within and Distance for an
intelligent location-based service. It really has some capabilities for
handling spatial events, but since it does not provide a complete sub-
scription language, it cannot be considered as a full-fledged Pub/Sub
system. Ref. [2] discusses the requirement of spatial alarm, i.e. a
user specifies the spatial area that he is concerned with at first, and
an alarm is raised to the user when the moving object (e.g. the user
himself) enters the designated area. Since the spatial alarm can pro-
vide the detection of one kind of spatial events, it can be regarded
as a variant of Pub/Sub mechanism. Refs. [2,3] give the solutions of
spatial alarm, in particular, introducing safe interval and safe region
to speed up the processing of spatial alarms. In addition, Ref. [9]
gives a preliminary progress report on spatial event processing at
IBM.

Somework related with spatio-temporal events is based on applica-
tion scenarios in sensor networks. Ref. [16] provides a SQL-style lan-
guage for detecting the events in a sensor network. The language can
depict non-spontaneous events, but the spatio-temporal constraints
provided are limited. For example, the distance between locations of
two events is its only means to specify the location constraint. As to
temporal constraints, only the and, or and sequence patterns between
two events can be specified. Ref. [22] presents a composite event
language SpaTec for monitoring physical phenomena and their spatio-
temporal features in sensor networks. SpaTec provides six base
event operators (same location, remote, sequence, concurrency, con-
junction, disjunction), and four composite event operators (same lo-
cation and sequence, remote and sequence, same location and
concurrency, remote and concurrency). The main contribution of
Ref. [22] is to give the set-based semantics of complex event expres-
sions in theory.

In terms of complex event detection, although, as Siena and
PADRES do, identifying logical relations and simple temporal rela-
tions can be added to any matching algorithm for primitive subscrip-
tions, most of Pub/Sub middleware present new matching algorithms
for their own composite subscription languages. Ref. [19] employs an
automaton to handle a composite subscription after factorizing the
composite subscription along its expression structure. When an au-
tomaton reaches the state with no outgoing transition, a complex
event corresponding to the state is successfully detected. RCEDA
[25] adopts a DAG-based structure for matching a composite sub-
scription, wherein leaf nodes stand for primitive subscriptions and
non-leaf nodes stand for the operators occurring in the composite
subscription. However, Refs. [19,25] lack the mechanisms to specify
and deal with the temporal relation which is bound to a specific
time point.

Besides Pub/Sub middleware, ECA rules in the active database can
be employed to detect the composite events which entirely exclude
spatial events. For example, Snoop [5] supports temporal composite
events such as sequential events and periodic events, and Ref. [23]
adopts XML-based ECA rules to monitor temporal and logic compos-
ite event in e-services. Data stream systems can also detect the
spatio-temporal events but in another way, i.e. by executing continu-
ous queries. Ref. [20] proposes a query indexing mechanism for con-
tinuous static range queries on moving objects. Query indexing
mechanism builds the indexes for queries instead of objects, which
can decrease the number of index updates since queries are not
added/removed as frequently as objects move. Further, for the first
time, the notion of safe region is introduced. So-called safe regions
refer to the areas which no queries care about and they are calculated
so as to filter the useless object-moving events. SINA [17] implements
incremental evaluation of continuous range queries on spatial–temporal
data streams. It uses the shared execution paradigm to incrementally
evaluate a large number of concurrent queries. The shortcoming in
SINA is that it cannot permit users to add or cancel queries dynamically.
Ref. [12] models continuous constraint queries as binary CSPs (Con-
straint Satisfaction Problems) and gets the results by running CSP
solvers, but due to the limitations of implementation of existing CSP
solvers, such a solution cannot deal with a large amount of continuous
queries efficiently.

Compared with the existing work, our work emphasizes on the
following points:

■ Designs an expressive composite subscription language to specify
spatio-temporal events, particularly, events reflecting objects' mo-
tion in IoT applications.

■ Gives a set of full-blown implementation approaches to detecting
spatio-temporal events, including temporal relation identification,
spatial relation identification, subscription variable checking, etc.

■ Presents optimization strategies for unary location subscriptions
by borrowing the ideas from continuous query processing in
data stream systems.

3. Composite subscription language specification

For a system of detecting spatio-temporal events, the way of
specifying time and location of events is its foundation. We adopt
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an interval to denote the duration of event occurrence, using the
event attribute stm to denote an event's starting time and etm to de-
note an event's ending time. Meanwhile, we treat the geographical
location where an event occurs as a simple region (i.e. a region with-
out holes), and employ as an event's spatial attribute a set of points
which describe the region's boundary in the geographical map and
the minimum convex polygon which contains all points in the set.

3.1. Operators and subscription variables in composite subscriptions

The composite subscription language CPSL adopts the content-based
subscription scheme and follows the BNF in the Appendix A. In brief, a
primitive subscription in CPSL is still a conjunction of predicates but
predicates are in the form of “type: name operator value”, and a
composite subscription in CPSL is still composed of several constitutive
subscriptions but the operators which connect constitutive subscrip-
tions are newly-defined ones.

CPSL provides the following temporal operators:
■ negation operator (in the basic form of !(T;t), or its variants !(A;t)
and !(A;B)),

■ happen-between operator (in the basic form of =|(T;t), or its
variants=|(A;t), =|(A;B)),

■ happen-after operator (in the basic form of |=(T;t), or its variants
|=(A;t), |=(A;B)),

■ concurrent operator (in the form of |(A)),

where T stands for an actual time point, and t denotes a temporal in-
terval expressed by an integer, and A, B denote subscriptions, which,
in the above operators, convey the time points of the occurrences of
events satisfying A or B.

The choice of the above temporal operators is the result of synthesiz-
ing theory results with practical needs. The classical interval algebra [1]
has recognized a total of 7 temporal relations between the temporal in-
tervals in which the events occurred, i.e. precede, meet, overlap, cover,
start,finish, and equal. Froma practical point of view,we refine “precede”
relation by distinguishing “happen-between” from “happen-after”
relation, and merge “overlap”, “cover” and the others into “concurrent”
relation. Next, the negation operator is introduced for observing non-
spontaneous events. Finally, by providing the basic forms of the above
temporal operators, the subscriptions in CPSL are permitted to bind to
specific time points.

The choice of spatial operators follows the similar working style.
Spatial relationships between two regions can be classified into topo-
logical relationships, direction relationships, and metric relationships
[11]. First, the topological relationships over regions can be obtained
by enumerating the intersections of boundaries and interiors of two re-
gions. The most famous theory, by far, is the spatial logic RCC-8 [21],
which gives eight kinds of spatial topological relationships, that is, if
there are two regions called RegionA and RegionB, then one of the fol-
lowing relations holds: RegionA disjoints RegionB, RegionA externally
connects RegionB, RegionA overlaps RegionB, RegionA equals RegionB,
RegionB internally contacts RegionA, RegionB in RegionA, RegionA inter-
nally contacts RegionB, and RegionA in RegionB. In accordance with
RCC-8 and from a practical point of view, we provide three kinds of
spatial operators, i.e. “overlap”, “happen-in”, and “same-place”, where
“overlap” has the same meaning as “overlap” plus “externally connect”
in RCC-8, “happen-in” has the same meaning as “in” plus “internally
contact” in RCC-8, and “same-place” has the same meaning as “equal”
in RCC-8. Next, spatial metric relationships include the area of a region,
the perimeter of a region, etc. We provide the operator for expressing
the distance between the locations of two events, i.e. Euclidean distance
between the centers of two areas where events take place. Now the dis-
tance operator is designed to work only on the condition that the two
locations of two events are disjoint, sowe can omit the disjoint operator.
Finally, for the time being, we ignore the spatial direction relationships.
From our observation, although the spatial direction relationships can
help declare the spatial relationship between two disjoint areas, the us-
ages of such relationships are limited in IoT applications. As a result,
CPSL provides the following spatial operators:
■ happen-in operator (in the basic form of @(R), or its variant
IN(A)),

■ overlap operator (in the basic form of OVLP(R), or its variant
OVLP(A)),

■ same-place operator (in the basic form of SPL(R), or its variant
SPL(A)),

■ distance operator (in the basic form of DIST(R;b;l), or DIST(R;=;l),
or DIST(R;>;l), or their variants DIST(A;b;l), or DIST(A;=;l), or
DIST(A;>;l)),

where R denotes the region which is represented as a convex polygon, l
is an integer denoting the distance and A denotes a subscription, which,
in the above operators, conveys the location of the occurrence of event
satisfying A. Here, we refer to the subscription involving one basic form
of spatial operator as unary location subscription.

In the following, we use some subscription examples to give tem-
poral operators' semantic explanations. Assuming that A, B, and C rep-
resent subscriptions, a, b, and c denote the event instances satisfying
subscription A, B and C, respectively, and ai represents the ith(i>0)
event instance which matches A, subscription=|(A;t)B can be used
to denote the events which satisfy subscription B and occur between
ai.etm and ai.etm+ t; subscription |=(A;B)C can be used to denote
the events which satisfy subscription C and occur between some a
and some b; subscription |(A)B can be used to observe that some a
and some b occur concurrently. However, subscription !(A,t)B is satis-
fied only when no event b happens in the interval of (ai.etm,
ai.etm+ t]. On the other side, subscription @(R)A can be used to de-
tect the events which satisfy subscription A and occur within region
R. Submitting subscription OVLP(A)B means that the user wants to
be alarmed when the location of some a overlaps the location of
some b. Submitting subscription SPL(A)B means that the user wants
to observe event a and event bwhich happen at the same place. How-
ever, to observe the event a satisfying the condition that the distance
between a's location and region R is equal to l, greater than l or less
than l, subscription DIST(R;=;l)A, DIST(R;>;l)A, and DIST(R;b;l)A
should be employed.

CPSL also defines two logical operators && and ||, which denote
logical AND and logical OR between two events respectively. Finally,
same as in [13], CPSL defines operators P(t), Q(n), and S(n,t,k) so as
to specify different iteration events.

In order to express the correlation among different subscriptions
in one composite subscription, in particular, to express the concur-
rent spatial and temporal relationships among different events, we
introduce the concept of subscription variable. A subscription variable
is the symbol which is associated with a subscription. In a composite
subscription, a subscription variable begins with “$” and ends with
“;”, and it can show up in the same position where a subscription
may appear.

Assuming that, in composite subscription A, there are two sub-
scription variables “$var1;”and “$ var2;” we have to conform to the
following form:

A; var1;¼ sub1ð Þ; var2;¼ sub2ð Þ

where “$var1;”and “$var2;” are bound to subscriptions sub1 and sub2
respectively, and they can occur in such a place within Awhere a sub-
scription may appear.
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3.2. Expressiveness

We note that the motivation behind observing spatio-temporal
events comes from the fact that the objects are in constant motion.
The objects may move around as time elapses, but all the changes of
topological relations between two objects are reduced to a total of
six modes [18]: leave, hit, reach, external, internal, and cross. Further,
we can decompose such a motion mode into several related events
happening within some interval and then capture them by submit-
ting subscriptions in CPSL. However, the subscriptions submitted
will be related with specific applications. The following is an example
of the cross mode. The cross mode involving object A and B can be
viewed as the following three sequential events happening within
some interval:

Event 1::=A and B occur within a certain distance (e.g. between
d1and d2) at one time point;
Event 2::=A and B occur at the same time and place;
Event 3::=A and B occur with a certain distance (e.g. between
d1and d2) at another time point;

In general, Event1 can be viewed as the starting of cross mode,
therefore, the following subscription can be employed.

¼ jð¼ $e1; tð Þ$e2; ; t2j Þ$e3; ;

$e1;¼ ð $A;ð Þ $B;ð Þ&&DIST $A; ;>; d1ð Þ $Bð Þ&&DIST $A; ;b; d2ð Þ $B;ð Þj Þ;
$e2;¼ ð $C;ð Þ $D;ð Þ&& SPL $C;ð Þ $D;ð Þj Þ;
$e3;¼ ð $M;ð Þ $N;ð Þ&&DIST $M; ;>; d1ð Þ $N;ð Þ&& DIST $M; ;b;d2ð Þ $N;ð Þj Þ;
$A;¼ E−A; $B;¼ E−B; $C;¼ E−A; $D;¼ E−B; $M;¼ E−A; $N;¼ E−B

where E-A and E-B denote the subscriptions used for observing that
object A and B occur respectively, t denotes a specific interval, and
d1 and d2 (d1bd2) denote two specified distances respectively.
Table 1
The subscriptions corresponding to six motion modes.

Motion modes of two moving objects

Leave: object A leaves object B

Hit: object A arrives at the outside of object B or at the location very close to B

Reach: objects A and B meet together

External: object A always moves outside of object B

Internal: object A always moves inside of object B

Cross: object A passes by object B
If the exact interval (e.g. (T, T+ t]) when the above three events
occur is known in advance, then the following subscription can be
used.

¼ j T ; tð Þ $X;ð Þ; $X;¼¼ j $e1; ; $e3;ð Þ $e2;

$e1;¼ ð $Að Þ $Bð Þ&&DIST $A; ;>; d1ð Þ $Bð Þ&&DIST $A; ;b; d2ð Þ $Bð Þj Þ;
$e2;¼ ð $Cð Þ $Dð Þ &&SPL $Cð Þ $Dð Þj Þ;
$e3;¼ ð $Mð Þ $Nð Þ&&DIST $M; ;>; d1ð Þ $Nð Þ&& DIST $M; ;b; d2ð Þ $Nð Þj Þ;
$A;¼ E−A; $B;¼ E−B; $C;¼ E−A; $D;¼ E−B; $M;¼ E−A; $N;¼ E−B

Table 1 lists a kind of possible subscriptions corresponding to six
motion modes of two moving objects (where d denotes a specific
distance). The subscriptions in CPSL can also depict the six motion
modes which involve one moving object and one static object. They
are omitted due to the limited space. By applying proper operators to
constitutive subscriptions, composite subscriptions in CPSL can express
the event patterns which are related to multiple moving objects. This
shows that any movement can be depicted by some subscription in
CPSL, and then captured by Grus.

3.3. Examples

In this subsection, we illustrate the usage of CPSL through some
specific application scenarios.

3.3.1. Logistics application scenarios
As one of the logisticsmanagement businesses,managers in logistics

companies need to monitor whether vehicles carrying goods leave the
source warehouse, and whether they reach the destination warehouse.
Suppose that (1) the source warehouse locates in Region1 and the
destination warehouse locates in Region2, (2) subscription A concerns
the events of occurrences of a certain vehicle. As thus, Subscription1
in the below can be used to observe the events that vehicles locate orig-
inally in Region1, and after a period of t1 they occur at a place to which
Corresponding subscriptions

=|($e1;; t)($e2;),
$e1;=(|($A;)($B;)&&DIST($A;;b;d)($B;)),
$e2;=(|($C;)($D;)&& DIST($C;;>;d)($D;)),
$A;=E-A, $B;=E-B,$C;=E-A, $D;=E-B
=|($e1;;t)($e2;),
$e1;=(|($A;)($B;) &&DIST($A;;>;d)($B;)),
$e2;=(|($C;)($D;) && DIST($C;;b;d)($D;)),
$A;=E-A, $B;=E-B, $C;=E-A, $D;=E-B
=|($e1;;t)($e2;),
$e1;=(|($A;)($B;)&&DIST($A;;>;d)($B;)),
$e2;=(|($C;)($D;) && SPL($C;)($D;)),
$A;=E-A, $B;=E-B, $C;=E-A, $D;=E-B
=|($e1;;t) $e2;
$e1;=(|($A;)($B;)&&DIST($A;;>;d2)($B;)),
$e2;=(|($C;)($D;) && DIST($C;;>;d2)($D;)),
$A;=E-A, $B;=E-B, $C;=E-A, $D;=E-B
=|($e1;;t) $e2;
$e1;=(|($A;)($B;)&&IN($B;)($A;)),
$e2;=(|($C;)($D;) &&IN($D;)($C;)),
$A;=E-A, $B;=E-B, $C;=E-A, $D;=E-B
=|($e1;;$e3;) $e2;
$e1;=(|($A;)($B;)&&DIST($A;;>;d1)($B;)&&DIST($A;;b;d2)($B;)),
$e2;=(|($C;)($D;) && SPL($C;)($D;)),
$e3;=(|($M;)($N;)&&DIST($M;;>;d1)($N;)&& DIST($M;;b;d2)($N;)),
$A;=E-A,$B;=E-B, $C;=E-A, $D;=E-B, $M;=E-A, $N;=E-B
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the distance from Region1 is more than x1. If some events satisfying
Subscription1 are detected, it means that the vehicles have left the
source warehouse. On the other hand, Subscription2 is used to ob-
serve the events that vehicles locate originally in a place more than
x2 far from Region2, and arrive at Region2 during the period of t2,
that is, Subscription2 can examine the vehicles which reach the des-
tination warehouse.

¼ @ Region1ð Þ Að Þ; t1ð Þ DIST Region1;>; x1ð Þ Að Þð Þj ðSubscription1Þ

¼ DIST Region2;>; x2ð Þ Að Þ ; t2ð Þ @ Region2ð Þ Að Þð Þj ðSubscription2Þ

Regarding the warehouse as a static object, Subscription1 and Sub-
scription2 describe the LEAVE and REACH moving mode of a moving
object and a static one.

In the process of cargo transportations, the distance between the
head vehicle and another vehicle V should not be more than x. If the
distance is beyond x, then it means vehicle V is deviating from the fleet
of the vehicles and the correlated managers are supposed to receive
the notification, that is, they need to observe the LEAVE mode of two
moving objects. Therefore, the correlated managers can submit sub-
scriptions in the following format:

¼ j $e1; ; tð Þ $e2;ð Þ; $e1;¼ ðj $Að Þð$BÞ&& DIST $A; ;b; xð Þ $Bð ÞÞ;
$e2;¼ ðjð$CÞð$DÞ&& DISTð$C; ;>; xÞð$DÞÞ;
$A;¼ E � A; $B;¼ E � B; $C;¼ E � A; $D;¼ E � B

ðSubscription3Þ

where subscription E-A concerns the events of occurrences of other
vehicles except the head vehicle, and subscription E-B concerns the
events of occurrences of the head one. Subscription3 is used to ob-
serve the events that the distance between the head vehicle and a
certain other vehicle changes from less than x to more than x in the
period of t, which means the vehicle is deviating from the fleet of
the vehicles.

3.3.2. Taxi service scenarios
The taxi service provides services for ordinary travelers. When

people are in need to go out, they can submit the related subscrip-
tions for uncarry taxi information around them. For example, people
who want to know the information of uncarry taxis within 2000 me-
ters can submit subscriptions like Subscription4.

DIST x; yð Þð Þ;b;2000Þ STRING : type ¼ ”TAXI”; STRING : state ¼ ”uncarry”ð Þ
ðSubscription4Þ

In Subscription4, (x,y) represents the current location of the sub-
scriber, STRING:type=“TAXI”;STRING:state=“uncarry” means that the
subscriber has interests in the taxis with uncarry state.
a      b c    

&&

BA

!(T;t)

tA

!(A;t)

tBA A

Fig. 1. Matching structures for some simplest composite subscriptions such as
3.3.3. Location-based shopping promotion services
The storekeepers want to send promotions to potential customers

if they occur nearby the stores. In order to find these customers, the
storekeepers can submit subscriptions like Subscription5.

@ PointA:x; PointA:yð Þ; PointB:x; PointB:yð Þ; PointC:x; PointC:yð Þ
ðPointD:x; PointD:yÞÞ ARITH : ageRange ¼ v−rangeð Þ:

ðSubscription5Þ

In Subscription5, PointA, PointB, PointC and PointD represent the
four vertexes of the rectangle region in subscription respectively, and
v-range is a positive integer, whose value can be taken from the set of
{“15”, “25”, “40”, “65”}, representing the age group of a person: a teen-
ager, a youth, a middle-aged person and an elderly person. What this
subscription means is that the subscriber cares about those customers
around his store whose ages are restricted.

4. Spatio-temporal event detection

In Grus, the basic procedure for detecting spatio-temporal events
is as follows: When a composite subscription submitted by a subscriber
arrives at a broker X of Grus, the corresponding matching structure is
built on X and its constituent primitive subscriptions, now with X as a
subscriber, are propagated to all the other brokers. When a primitive
event arriving at any broker is matched with a primitive subscription
with X as a subscriber, this event is sent to X for further executing the
matching of complex events. If the complex eventmatching algorithmre-
ports that some composite subscriptions are satisfied, then notifications
are sent to corresponding subscribers. This section focuses on complex
event matching.

4.1. Matching structure

Matching structures, i.e. DAGs (Directed Acyclic Graph) are used
to record the information of composite subscriptions. All nodes in a
matching structure can be classified into three kinds: (1) subscrip-
tion nodes, recording the primitive subscriptions, (2) operator nodes,
recording the operator constraints, and (3) time nodes, recording time
points.

As for the simplest kind of composite subscriptions, i.e. the com-
posite subscriptions containing only one single operator and excluding
any subscription variable, the built DAGs have the following common
features: there are no other nodes but zero in-degree nodes and zero
out-degree nodes, where the zero in-degree nodes are subscription
nodes or time nodes and the zero out-degree ones are operator nodes.
Fig. 1 shows some typical matching structures built for those simplest
composite subscriptions, where t stands for the time node. If a subscrip-
tion includes temporal operators, then one or more time nodes will
be built in its corresponding matching structure.

Typically, the operator node maintains the following information:
(1) an index for subscription variables. If there is no subscription variable
in the matching structure, this index will be set to null. To be specific, an
index records (a) the definitions of the subscription variables, whether
they are delivered to this node or initially defined on this node, and
(b) the predecessors fromwhich the subscription variables are delivered
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Fig. 2. Matching structure for “|($x;)$y; && OVLP($x;)$y;, $x;=A&&B, $y;=D&&E”.
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if the subscription variables are delivered; (2) one or multiple queues
recording the events which have arrived; (3) pointers directing to suc-
cessor nodes; (4) pointers directing to predecessor nodes; (5) a list of
subscribers.

Fig. 2 shows the matching structure of subscription |($x;)$y; &&
OVLP($x;)$y;, $x;=A&&B, $y;=D&&E, and the index of subscription
variables on every node. Here L and R represent that a subscription
variable comes from the left node or the right node of the predecessor
operator nodes.

4.2. Temporal relationship identification

In order to provide temporal relationship identification, we intro-
duce time event and Time Event Generator.

Time events are events that are generated by brokers themselves
and occur at the scheduled time points. For a clear description, all
the events except time events are called normal events.

Usually, the time point at which a time event occurs is registered
in Time Event Generator by the corresponding time node in advance,
and this step is called “registering time event”. When the registered
time is up, Time Event Generator generates the time event and sends
it to the corresponding time node.

Time eventsmay be registered at different time points, and all the sit-
uations can fall into two categories: (1) some are registeredwhen the op-
erator nodes in thematching structure are created. Taking subscription=
|(T,t)A as an example, only the events which match subscription A and
happen in the interval of (T, T+t] can satisfy the constraint condition,
so when the matching structure is created, two time events, T and T+t,
will be registered; (2) some are registered when a time node's successor
node receives a normal event. For example, for subscription !(A,t)B, when
operator node !(A,t) receives an event a, a time event a.etm+ t will
be registered in Time Event Generator by the time node t.

Time node, as a receiver of time events, can trigger its successor nodes
to execute the corresponding actions, e.g. starting or stopping dealing
with normal events, and making the events in the event queue(s) valid
or invalid. For example, operator node |=(T,t) will start processing in-
coming normal events after it receives time event T+t from predecessor
time node; but operator node=|(T,t) will execute the opposite action
when it receives the same time event; operator node |=(A,t) will make
event a in the event queue valid when it receives time event a.etm+t,
so that the operator node can further check whether a and the other in-
coming normal events satisfy the temporal constraint, however, for oper-
ator node=|(A,t), the same time event will cause event a to be deleted
from its event queue.
4.3. Spatial relationship identification

In Grus, spatial relationship identification involves five types of
computing:

(1) Computing the convex hull for a set of n points in O(nlogn)
time by employing Graham algorithm [8]. When two or more
events form a complex event, we calculate the convex hull
which contains all the points of constituent events as the spatial
attribute of the complex event.

(2) Identifying the relationship between a point and a convex poly-
gonwith n vertexes inO(n) time.We use cross product operation
to decide whether a point is in/on the edge of/out of a convex
polygon.

(3) Identifying the relationships between two convex polygons. We
concentrate on three topological relationships, i.e. “in”, “overlap”
and “disjoint”. If the two polygons have n andm vertexes respec-
tively, we can draw the results in at most O(nm) time through
calculating the relationship between one polygon and a point
of another polygon one by one.

(4) Computingdistance between twodisjoint convex polygons. If the
two polygons have n andm vertexes respectively, we can get the
distance through rotating calipers algorithm [24] in O(n+m)
time and use it as the distance between two events or between
an event and an area.

(5) Computing the center of a convex polygon with n vertexes in
O(n) time. We divide a convex polygon into n-2 triangles, and
then calculate the center of gravity and area for every triangle.
Finally we draw the polygon's area by summing up each
triangle's area and the polygon's center by calculating the
weighted mean value of triangle centers with triangle areas as
weights. In the aid of the center of a convex polygon, we can cal-
culate the distance between the centers of two convex polygons,
and judge whether two events occur in the same place by com-
paring the distance with the predefined threshold.

4.4. Subscription variable checking mechanism

If an operator node in a matching structure holds the definition of
a subscription variable, supposed as $x;, then the event Event that sat-
isfies the operator constraint of the node will be delivered to its suc-
cessor node in the form of “Event,b$x;, Event>”. The successor will
perform the consistency check for the assignments of subscription
variables. In the following, the subscription |($x;)$y;&&OVLP($x;)
$y;,$x;=A&&B,$y;=D&&E is taken as an example to illustrate the
subscription variable checking mechanism. Here, we use a concatena-
tion of lowercase letters to represent the instances of complex events
which are composed of the events that the separate lowercase letter
stands for.

Assuming that four primitive events a, b, d and e, which satisfy sub-
scription A, B, D and E respectively, reach some broker at the same time.
First, two complex events ab and de are formed in Fig. 3(a). Next, in
Fig. 3(b), since the operator node representing A&&B is the node
which initially defines the subscription variable $x;, ab is directly deliv-
ered to the successor nodes in the form of “ab,b$x;,ab>”. In the same
way, de is delivered in the form of “de,b$y;,de>”. Then, in Fig. 3(c),
since that subscription variables $x; and $y; have only appeared once
in the operator node of |(A), there is no need to check these two vari-
ables, and it is the same for subscription variables $x; and $y; on the
node of OVLP(A). Assuming that both ab and de satisfy the constraints
on the nodes of |(A) as well as OVLP(A), the events will be delivered di-
rectly to the successor nodes in the form of “abde,b$x;,ab>,b$y;,de>”

from both left predecessor and right predecessor. Finally, in Fig. 3(d),
the above complex events reach the operator node representing |($x;)
$y; &&OVLP($x;)$y;. Since $x; has appeared in both left and right prede-
cessor operator nodes, we need to check whether those events binding
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Fig. 3. Processing of subscription “|($x;)$y; && OVLP($x;)$y;, $x;=A&&B, $y;=D&&E”.
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to $x; are identical or not. For the above subscription, ab in “abde,b$x;,
ab>,b$y;,de>” (from left predecessor) and ab in “abde,b$x;,ab>,b$y;,
de>” (from right predecessor) are equivalent, therefore the constraint
for subscription variable $x; is satisfied. The checking process for $y; is
the same as that for $x;. Consequently one complex event “abde,b$x;,
ab>,b$y;,de>” is composed and sent to the subscribers.

Let's look at another case. If the events which have occurred have
the following features: (1) four events a1, b1, d1 and e1 arrive simul-
taneously, and at the next time point another two events d2 and e2
arrive. (2) The complex event formed by a1 and b1 cannot satisfy the
spatial relationships of operatorOVLP(A)with the complex event formed
by d1 and e1, but it can form the overlap relationship with the complex
event formed by d2 and e2. In the light of the subscription variable
checking mechanism, the operator node |($x;)$y; && OVLP($x;)$y;
will first get the complex event “a1b1d1e1,b$x;,a1b1>, b$y;,d1e1>”

from its left predecessor operator node and then “a1b1d2e2,b$x;,
a1b1>,b$y;,d2e2>” from its right predecessor operator node. Further,
because the above two complex events have different bindings of $y;,
the operator node representing |($x;)$y; && OVLP($x;)$y; will not be
triggered.

4.5. Matching algorithm

When a normal event arrives at a subscription node in thematching
structure, it is supposed that the event can match some primitive sub-
scription, so it will be delivered to the subscription node's successors
to trigger furthermatching. Each successor nodewill check the received
event with its constraints, and once the constraints can be satisfied, a
new complex event will be created. If the list of subscribers is not null
on this node, the complex event will be sent to these subscribers as a
notification. At the same time, the complex eventwill continue to be de-
livered to successors for further processing. This procedure will be re-
peated until a zero out-degree node is reached. With regard to the
time event, it follows the above processing procedure except that it is
sent to the corresponding time node at the beginning.

Consumption semantics [5] determines how to form complex events
from the incoming events and when to delete those events. Ref. [5] pro-
poses four kinds of semantics, i.e. Recent, Chronicle, Continuous and Cu-
mulative semantics.Wepresent a newone, i.e. First-Matching semantics.
Following First-Matching semantics, the oldest instance of each compo-
nent event is selected to construct a complex event and the event will
be discarded once it is matched. In Grus, we support Recent, Chronicle,
and First-Matching semantics.

The existence of subscription variables may cause an event to be
delivered to multiple operator nodes, and an event may become inva-
lid due to different reasons (e.g. the event just arrived at a temporal
operator node may become invalid due to the arrival of a time event),
therefore, we design the event invalidation mechanism. Once an event
becomes invalid, this mechanism is triggered to delete the copies of
the invalid event which have been delivered to the other operator
nodes, so as to guarantee that events are consistently recorded in the
matching structure.

Fig. 4 gives thematching algorithm. Concretely, once an event arrives
at a subscription node, the matching method CompositeSubMatch(event,
null) will be invoked automatically.

In lines 3–5, a primitive event on a subscription node is driven into the
matching structure. In lines 7–8, registerTimer() is used to judge whether
a time event needs registering according to the incoming event. If it
returns true, a time event is registered. In lines 9–11, corresponding
events are extracted from event queues according to the operator con-
straint and consumption semantics at first. Then the logical, temporal,
spatial and subscription variable constraints are detected. If all constraints
are satisfied, one complex eventwill be composed. In lines 12–13, if there
is any subscriber on the current node, it means that the current node
stands for some subscription, so the subscribers will be notified. In lines
18–19, if event is a time event, timeEventAction() will be called to trigger
a time node to start corresponding processing. Since a time event may
make some normal events invalid, the event invalidation mechanism
may be executed in this method. In lines 21–22, during the matching
process, if the arrival of an event makes some other existing events on
a node unable to form new complex events, we refer to the newly-
arrived event as a tail event. Those unavailable events and the tail event
will be discarded; and meanwhile the event invalidation mechanism
needs to be executed. In lines 23–26, if event is not a time event or a tail
event, but it may form a complex event with some other events some
time later, then it will be put into the event queue, otherwise event inval-
idation process is run.

For a composite subscription, assuming that in itsmatching structure,
there areM operator nodes and the longest length of the paths from zero
in-degree nodes to zero out-degree nodes is H, an incoming event will
trigger (1) at most H constraint checking on the operator nodes in the
worst case, and (2) at most M event invalidation processing. Moreover,
we note that checking spatial constraints takes more time, and by con-
trast, the time taken to check the other constraints (such as temporal
constraints, logical constraints, etc.) is negligible, therefore, if n is the
maximum number of vertexes of polygons met in checking the spatial
constraints and O(f(n)) denotes the time complexity of detecting a spa-
tial constraint on a node, then the algorithmwill finish a matching pro-
cedure in O(H× f(n)+M) time.

Grus (standard version) implements the abovematching algorithm.
4.6. Optimization strategies

We present the optimization strategies for unary location sub-
scriptions: build multi-level indexes at brokers so as to improve
the processing performance of brokers, and on the other hand, utilize
the computational capacity of client computers to calculate and
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maintain safe regions on the clients, so that the events can be filtered
on the clients and the workloads on the brokers can be reduced.

4.6.1. Safe region
We define the safe region as a region that is on the outside of all

regions which are concerned by subscriptions. If the location of an
event is in this region, then it will not trigger any subscription. In
other words, the spatial events in safe region can be filtered out di-
rectly, and do not need to be sent to the broker for further matching.
The ideal safe region is the rest region of the entire map from which
all the regions concerned by subscriptions are removed. It is obvious
that the load to compute the ideal safe region is enormous while
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facing a huge map or lots of subscription regions. It's difficult to calcu-
late the ideal safe region, so we need to find a way to get a reasonable
and calculable safe region. Therefore, we design and implement an al-
gorithm to express and calculate safe region, we name it Greedy Larg-
est Rectangle (GLR) algorithm, which is shown in Fig. 5.

First of all, we regard the entire map U as a large rectangle Rect(x,y,
w,h), where (x,y) represents the bottom left point of the map,w and h
represent the width and height of the map respectively. Secondly, we
divide the rectangle into M×N grids, and the grid size is not less than
the size of the safe region of any mobile object in any time. Thus, tak-
ing the bottom left vertex of the rectangle as the origin of coordinates,
cell Cij can be defined as Cij=Rect(x+ i×α,y+ j×β,α,β), M= ⌈w/α⌉,
N= ⌈h/β⌉. After that, we can define f pð Þ ¼ Cpx−x

α
py−y

β
, where f(p) is the

mapping from point p(px,py) to its grid. Moreover, let ps be the cur-
rent location, and ϕs be the largest safe region with the center of ps.

ϕs can be calculated by the formula ϕs ¼ Ckl− ∪
As;k;lj j
i¼1

R Aið Þ, where Ckl

represents the gird in which ps locates, R(Ai) represents the region
which is the scope of subscribers' concerns and locates in the grid of
ps, and As,k,l represents the set of subscriptions related to the grid of
ps, that is, the regions which As,k,l concerns locate in the grid of ps.

Let As be the set of unary location subscriptions related to the grid
of ps in the entire map. GLR algorithm uses as input data the current
location ps and the grid Ckl which can be calculated by the mapping
function f(p) and works as follows.

At first, we need to get Rs,k,l, the set of the regions of unary location
subscriptions locating in the grid Ckl. That is, for each subscription in
As, get the region which it concerns through the function Loc(sub). If
the region is not a rectangle, expand it to its minimum bounding
rectangle. In detail, if the region is in the grid Ckl, then put it into Rs,k,l,
otherwise put the intersection between the region and Ckl into Rs,k,l. If
set Rs,k,l is empty, then return the entire grid Ckl as the safe region.
After that, we call function assignRegionToQuads(), it can map the sub-
scription in Rs,k,l to each quadrant while taking ps as the center of
four quadrants and return an array regionQuads, of which the sub-
script represents the number of quadrants and the element repre-
sents the set of regions (rectangles now) in the corresponding
quadrant. Then, we calculate a rectangular safe region: (1) for each



265B. Jin et al. / Decision Support Systems 55 (2013) 256–269
vertex of rectangles in every quadrant, get rid of those points far
away from ps in O(|Rs,k,l|) time, and return canPointsQuads which is
the initial set of candidate points; (2) sort these points in canPointsQuads
according to the quadrants and get rid of those points which can be
dominated by other points in the same quadrant, which takes O(|
canPointsQuads|×log|canPointsQuads|) time; (3) do further processing
to these points in canPointsQuads, and return the corner points of the rect-
angle with ps as one of its vertexes in each quadrant, which also takes O(|
canPointsQuads|×log|canPointsQuads|) time; (4) construct a maximum
rectangular safe region in O(|canPointsQuads|) time by employing a
greedy strategy on the points in canPointsQuads.

Therefore, the computational complexity of GLR algorithm is at
most O(nlogn), where n is the number of unary location subscriptions
in a grid.

When a client receives a location event from a mobile object, it
will determine whether there is a history record of the mobile object's
position. If so, it means that the safe region for the mobile object has
been established. Otherwise, the client will send this location event to
the broker, ask the broker to send the subscriptions related to the grid
which is calculated according to the current location reported by the
mobile object's location event, and then call GLR algorithm to build a
safe region for the mobile object. If the safe region has already existed
and the mobile object's current location is in it, then this event is ig-
nored. On the contrary, the clientwill send this location event to the bro-
ker and call the GLR algorithm to calculate the safe region for themobile
object again. By calculating and maintaining safe regions on the clients,
some events can be filtered on the clients, and theworkloads on the bro-
kers can be reduced, but at the expense of it, subscription information
needs to be stored in the clients. Fig. 6 is an example of a safe region.
In Fig. 6, Ps is the mobile object's location stored in a certain client, rect-
angles A1–A5 represent the regions concerned by subscriptions, P1, P2,
a
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Fig. 7. For the logistics application scenario: (a) number of matched complex events; (b) nu
consumption.
C1, C2, C3, and P4 are corner points in each quadrant and the rectangle
in the shadow is the final safe region of the mobile object.
4.6.2. Spatial indexes
In order to enhance the event detection performance, we explore

the relationships between regions which occur in unary location sub-
scriptions, and build spatial indexes for these regions in the format of
R-Trees. R-Tree is the extension of B+tree in multi-dimensional space,
and it is also an AVL tree. R-Tree consists of two kinds of nodes, that is,
non-leaf nodes and leaf nodes. Leaf nodes store bounding rectangles of
actual spatial objects. Non-leaf nodes store the minimum bounding
rectangles of all objects within their children nodes. By building spa-
tial indexes with the help of R-Tree, we can find the rectangle region
which contains a known location quickly.

We use multilevel index mechanism to manage the spatial infor-
mation in unary location subscriptions. The first level is the index of
location subscription operators, such as @, DIST, etc., the second level
is the index of lower level subscriptions (they are primitive subscrip-
tions in general), and the last level is R-Tree level. In particular, the in-
formation recorded in R-Tree contains not only the information of
spatial regions, but also the information of subscribers who submit sub-
scriptions. Therefore, when a location event arrives, if a spatial region of
which the subscribers are not null can be found in R-Tree index, it indi-
cates that there might be some subscriptions related to the location
event. Furthermore, if the restraint relationship between the location
event and the regions in subscriptions is satisfied, event notifications
can be sent directly according to the subscriber information. It's seen
that in somescenarios, for example, in the shopping promotion scenario,
there are a lot of subscriptions in the same format but with different
values of regions, so it greatly accelerates matching spatial events with
b
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unary location subscriptions using the multilevel index structure de-
scribed in the above.

The optimization strategies described above are implemented in
the optimized version of Grus. The optimized version can support wire-
less clients by deploying the client software on users' Android-based
mobile devices.
5. Evaluation

In order to evaluate the performance and costs of Grus (standard
and optimized versions), we carry out a series of experiments. Firstly,
we design the experiment which simulates the logistics application
scenario, so as to compare the standard version and SIENA in terms of
performance and costs of matching spatio-temporal events. For the
sake of the fairness of the evaluation, we develop a fat client for SIENA
tomake it offer the same composite subscriptionmatching functionality
as Grus does. This experiment focuses mainly on testing the matching
performance and the corresponding costs of the system, therefore, we
deploy the standard version of Grus and themodified SIENAon one bro-
ker and four clients. Secondly, we evaluate the optimization strategies
in optimized version for unitary location subscriptions. We simulate
the scenarios of taxi service and shopping promotion service in the ex-
periments, so that the optimization strategies in optimized version can
be invoked.
a

Fig. 9. For the shopping promotion scenario: (a) tim
5.1. Logistics application scenario

We take Subscription1–3 in Section 3.3 as three kinds of inputs of
the experiment. In particular, subscription A, E-A, E-B in the above
Subscription1–3 are all in the following format: ARITH: id=v1,STRING:
type=v2, where id represents the identifier of the vehicle, type repre-
sents the type of the vehicle, such as trucks, vans, etc., v1 is a positive in-
teger, and v2 is a string constant. We generate 5000 specific composite
subscriptions for each kind of subscription. Furthermore, events are
generated in the format as follows: ARITH: id=v1,STRING: type=v2,
timestamp, x, y, where the meaning and range of v1 and v2 are the
same as the subscriptions mentioned above, timestamp represents the
time of event occurrence, and (x, y) represents the location of event.

In the experiment, 15,000 composite subscriptions are first injected
into the system under test, and then 60,000 events are continuously
published at a ratio of 1500 event/s. The event order in the event stream
can guarantee that two or four consecutive events can satisfy an existing
composite subscription.

We record the number of matched complex events, the number of
network messages, and the memory consumption in the broker and
the clients. The experimental results are shown in Fig. 7. The memory
consumption of four clients is nearly the same, so only one client's
memory consumption is provided. From the results shown in Fig. 7,
we can see that the standard version of Grus takes 416 s to match
25,000 complex events, but the modified SIENA takes 1873 s to finish
b

e consumption and (b) memory consumption.
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the same task, which means that the throughput of Grus is 4.5 times
of that of the modified SIENA. The number of network messages used
in Grus is 25,000 but 60,000 in the modified SIENA, therefore, as far as
the number of networkmessages consumed by each matched event is
concerned, the modified SIENA is 2.4 times as many as Grus. Besides,
during the process of the experiment, broker memory consumption
of Grus is at most 1.3 times as many as the modified SIENA's, but cli-
ent memory consumption of Grus is far less than the SIENA's.

From the above experiment, it concludes that the throughput of
Grus is much higher than the modified SIENA's. Since fat client strat-
egy completes the computation of the spatio-temporal detection in
clients, it not only brings about the fact that the throughput is lower
than Grus, but also results in the increase of the number of events trans-
ferred in the system, which increases the network messages. Mean-
while, if the same subscription is submitted by different clients, the
computation of matching the same subscription has to be done in mul-
tiple clients, which increases the consumption of computing resources
in the system.

5.2. Taxi service scenario

This experiment simulates the taxi service scenario where differ-
ent users submit multiple Subscription4s in Section 3.3 and uncarry
moving taxis send events in the following format:

ARITH : id ¼ v−id; STRING : type ¼ ”TAXI”; STRING : state
¼ ”uncarry”; timestamp; x; y;

where v-id is a positive integer which is used for identifying the taxi,
timestamp represents the time of event occurrence, and (x,y) repre-
sents the current location of the taxi.

The procedure of the experiment is as follows. At first, a certain
number of Subscription4s are injected into the standard version and
the optimized version of Grus, and then events are sent which follow
a Poisson arrival process at a rate of 500 per second. In all the pub-
lished events, 50% of them can be matched with subscriptions. In par-
ticular, events are generated to simulate the driving routes of taxis, so
they have continuity. The continuity of location eventsmakes it possible
for clients to filter those events which are impossible to be matched
through the safe region mechanism.

Fig. 8 shows the time and space consumption of the standard ver-
sion and the optimized version of Grus under different numbers of
published events. In Fig. 8, X axis represents the number of subscrip-
tions, which increases from 1000 to 10,000 by 1000 and Y axis repre-
sents the time or memory consumed by the broker.

As shown in Fig. 8, while facing the same events, the optimized
version, compared with the standard version, has relatively strong
advantages in matching the subscriptions with DIST(R;b;L) operator.
For example, for matching 20,000 events, the average time of the 10
experiments of the optimized version is only 1.02% of that of the stan-
dard one's, and the average memory consumption of the optimized
version is 9.32% of the standard one's.

The experimental data in Fig. 8 also show how the processing time
and the occupied memory of a broker change with the increase of the
total number of events. For example, when the number of subscrip-
tions is fixed at 10,000 and the total number of events multiplies
from 10,000 to 80,000, the time consumed by the broker for the opti-
mized version is 26 s, 47 s, 91 s and 179 s, and the memories occu-
pied are 147M, 147M, 146M, and 148M, respectively. However, the
corresponding time for the standard version is 215 s, 417 s, 829 s,
and 1567 s, and the memories are 230M, 323M, 561M and 951M, re-
spectively. Considering that the time used for sending the above
events is 20 s, 40 s, 80 s, and 160 s, respectively, the above results in-
dicate that the optimized version can finish dealing with the events
within a short period of time after all the events are sent, however,
the standard version has to take a longer time. The experimental data
also illustrate that the optimized version can offer scalability to support
a large number of events with relatively stable memory costs. In es-
sence, these are mainly due to the filtering of events by clients so as to
offload work from the broker.
5.3. Shopping promotion scenario

This experiment simulates the shopping promotion scenario
where different storekeepers submit multiple Subscription5s in
Section 3.3 and moving users publish events about their own ages
and locations in the format as follows:

STRING : username ¼ v−name;ARITH
: ageRange ¼ v−range; timestamp; x; y;

where v-name represents the user's name, whose value can only be
taken from the set {“a”, “b”, “c”, “d”, “e”}, representing five different
users, the meaning of v-range is the same as that of v-range in Sub-
scription5, timestamp represents the time of event occurrence, and
(x,y) represents the user's current location.

The procedure of the experiment is as follows. At first, a certain
number of Subscription5s are injected into the system, then five
users walking in different routes are simulated, each one with the
same number of consecutive location events. All the events follow a
Poisson arrival process at a rate of 500 per second, and 50% of them
can be matched with subscriptions which have been injected into
the system. Fig. 9 shows the time and memory consumption of the
standard version and the optimized version under different numbers
of published events. In Fig. 9, X axis and Y axis have the same mean-
ings as the corresponding ones in Fig. 8.

While the data in Fig. 9 are comparedwith the ones in Fig. 8, the sim-
ilar data trends can be found in the case of the same number of events.
This situation indicates that optimized version can match a great quan-
tity of events against the subscriptions with @(R) operator efficiently
at the expense of relatively stable memory, which also illustrates the
optimized version has the intrinsic scalability.
6. Conclusions

In this paper, we focus on detecting spatio-temporal events through
Pub/Sub middleware. We provide an expressive subscription language
for complex spatio-temporal events. The new language equips ten tem-
poral operators of four kinds and eleven spatial operators of four kinds,
whose composition can describe amajority of spatio-temporal events in
IoT applications, especially in the scenarios where the spatio-temporal
events relate with two or more moving objects. On the other hand,
we propose a set of detecting methods which incorporate temporal re-
lationship identification, spatial relationship identification, subscription
variable checking, etc. Moreover, we present the speed-up strategies for
unary location subscriptions. All mentioned above have been imple-
mented in our Pub/Sub middleware Grus (standard version and opti-
mized version). Experimental results show that Grus (standard version)
is efficient and low-cost, as compared with the modified SIENA, and
Grus (optimized version) can effectively accelerate the processing of
spatial event detection as compared with Grus (standard version). Our
next work is to apply Grus in practical applications and improve system
robustness.
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Appendix A. BNF for composite subscription language CPSL
BINARY::=('0'|'1')+('b'|'B')
INT::= ('-')? DECIMAL_LITERAL (['l','L'])? | HEX_LITERAL (['l','L'])?
DECIMAL_LITERAL::=['1'-'9'] (['0'-'9'])*
HEX_LITERAL::='0' ['x','X'] (['0'-'9','a'-'f','A'-'F'])+
Digit::= ['0'-'9']
Numeric::= ('-')? (Digit–'0') Digit* ('.' Digit+)?
Letter::= ['a'-'z', 'A'-'Z']
Name ::= Letter (Letter | Digit | '.' | '-' | '_' )*
SubVariable ::= '$' Name ';'
PredVariable ::= '&' Name ';'
Subscription ::= CompositeSub (',' Timestamp)? '@'
Timestamp= Numeric
compositeSub ::= Sub (',' SubVariable '=' '(' Sub ')')*
Sub ::= LogicalOrSub | SubVariable
LogicalOrSub ::= LogicalAndSub ('||' LogicalAndSub)*
LogicalAndSub ::= OtherCSub ('&&' OtherCSub)*
OtherCSub ::= TemporalSub | RepetitiveSub | SpatialSub | PrimitiveSub |
'(' Sub ')'
TemporalSub ::= NotSub| SeqBeforeSub | SeqConcurrentSub |
SeqAfterSub
NotSub :: = '!(' TimeRange ')(' Sub ')'
SeqBeforeSub ::= '=|(' TimeRange ')(' Sub ')'
SeqConcurrentSub ::= '|(' Sub ')(' Sub ')'
SeqAfterSub ::= '|=(' TimeRange ')(' Sub ')'
TimeRange ::= INT ';' INT | Sub ';' INT | Sub ';' Sub
RepetitiveSub::= SntkSub | PtSub | QnSub
SntkSub ::= 'S(' n ',' t ',' k ')(' Sub ')'
PtSub ::= 'P(' t ')(' Sub ')'
QnSub ::= 'Q(' n ')(' Sub ')'
SpatialSub ::= SpatialHappenInSub | SpatialTopologicalSub |
SpatialDistanceSub
SpatialHappenInSub ::= '@(' Region ')(' Sub ')'
Region ::= '((' X ',' Y')'(',' PointOther)* ')'
PointOther ::= '(' X ',' Y')'
X ::= Numeric
Y ::= Numeric
SpatialTopologicalSub ::= SpatialInSub | SpatialOverlapSub |
SpatialSamePlaceSub

SpatialInSub ::= 'IN(' Sub ';' Sub ')'
SpatialOverlapSub ::= 'OVLP(' Place ';' Sub ')'
SpatialSamePlaceSub ::= 'SPL(' Sub ';' Sub ')'
SpatialDistanceSub ::= 'DIST(' Place ';' DistOp ';' INT ')(' Sub ')'
Place ::= Sub | Region
DistOp ::= '>' | '=' | '<'
PrimitiveSub ::= Predicate (',' Predicate)*
Predicate ::= RFIDType | ArithType | StringType
RFIDType ::= 'RFID:' (RFIDExpress | RFIDExpressVa)
RFIDExpressVa ::= ('PRODUCT' | 'READER') RFIDOp
PredVariable
RFIDExpress ::= ('PRODUCT' | 'Reader') RFIDOp RFIDValue
(('&&' | '||') RFIDExpress)*
RFIDOp ::= '<(' m ',' n ',' id ')' | '>(' m ',' n ',' id ')' | '<=(' m ',' n ','
id ')' | '>=(' m ',' n ',' id ')' | '=(' m ',' n ',' id ')' | '!= (' m ',' n ',' id ')'
RFIDValue ::= BINARY | HEX_LITERAL
ArithType ::= 'ARITH:' (ArithExpressVa | ArithExpress |
RangeExpressConj | RangeExpressDisj)
ArithExpressVa ::= Name ArithOp PredVariable ('+' | '-' | '*' | '/'
Numeric)?
ArithExpress ::= Name ArithOp Numeric (('&&' | '||')
ArithExpress)*
ArithOp ::= '<' | '>' | '=' | '<=' | '>=' | '!='
RangeExpressConj ::= Name '<-' ('[' | '(') Numeric ',' Numeric (')'
| ']')(('&&' | '||') RangeExpressConj)*
RangeExpressDisj ::= Name '<+' ('[' | '(') Numeric ',' Numeric
(')' | ']')(('&&' | '||') RangeExpressDisj)*
StringType ::= 'STRING:' (StringExpressVa | StringExpress |
EnumerationExpress)
StringExpressVa ::= Name StringOp PredVariable
StringExpress ::= Name StringOp String (('&&' | '||')
StringExpress)*
StringOp ::= '*>' | '>*' | '*=' | '=' | '!=' | '*<' | '<*' | '=*'
String ::= '"' (#x9 | #xA | #xD | [#x20-#x21] | [#x23-#xFF] |
#x22#x22)+ '"'
EnumerationExpress ::= Name ('<-' | '<+') '{' String (',' String)+
'}'
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